
Copyright ©1991 Jason A. Davis & David H. Chait 
Portions of code Copyright ©1989 Symantec Corporation



General Software Information:General Software Information:
Copyright:

The included  software  programs,  ’bot  Developer  and ’bot  Arena (the
“Applications”), and their Documentation (including Tutorials) are Copyright
©1991 by Jason A. Davis and David H. Chait and are protected by the US
Copyright laws.  You may not decompile, disassemble, or create derivative
works from the Applications.

Requirements:
’bot requires System 6.0 or greater on a Classic, SE, or Plus, and requires

System 6.0.5 or greater on all other machines.  It is fully compatible with
MultiFinder and System 7.0, which allow battles and Tournaments to be run
in the background.  Even under MultiFinder, it can be run on a Mac with only
1 Meg of memory.

Shareware Information:
These  Applications  are  distributed  under  the  Shareware  system.

Shareware  is  a  user-supported  distribution  method:  users  can  try  out
software and pay after deciding they like it and use it.  You may use ’bot for
thirty (30) days without charge, after which we request that you send us the
registration fee.  If you do not register, we ask that you delete all copies of
the Applications at the end of the thirty-day period.  Registered users will be
notified of significant upgrades and any upcoming tournaments.  All minor
upgrades will be free of charge to registered users.

The software residing in the  ’bot Folder,  which includes the Tutorial
folder, the Applications, and this Documentation, may be distributed by user
groups providing they are charging only a nominal fee for their expenses.  In
no case may users be charged for the ’bot software, except of course for
sending the normal registration fees to us.  All Public Domain and Shareware
distribution companies/channels and all other for-profit corporations wishing
to  distribute  ’bot  must  FIRST  contact  Future  Generation  Software  at  the
address listed below. 

Registration Fee:
To become a registered user, send $15 (+5% for MA residents) to:

Future Generation Software
10 Thoreau Road
Lexington, MA 02173



Please only send a check, and make it payable to Jason Davis.  Include
your name, mailing address, electronic mail address (if any), and the version
number of each ’bot Application.

Group Registration:
As an alternative (and to make the cost for you lower), we will register a

group of 2-5 users together for a single fee of $20 (+5% for MA residents).
Please send a check as above along with the information requested for each
user in the group.

General Disclaimer:
Although we have taken great efforts to insure that these Applications

are  bug  free,  we  cannot  guarantee  that  they  are  without  error.   Future
Generation Software (Jason Davis & David Chait) takes no responsibility for
any incidental  or consequential  damages resultiing from the use of  these
Applications.  In no case will our liability exceed the registration fee paid to
Future Generation Software.

Contacting Us:
We welcome all comments and suggestions for improvement.  You can

reach us at any of the following:
America Online: FUGESoft
CompuServe: 71121,2506
Internet: jdavis@husc3.harvard.edu
Mail Address:

Future Generation Software
10 Thoreau Road
Lexington, MA 02173

Key to the Documentation:
All code examples are printed in Monaco.  All other text is either Geneva

or New York.  In code examples, braces (“{” and “}”) around a piece of an
example is used to show that a parameter to a command is OPTIONAL, not
required.



Welcome toWelcome to ’bot ’bot
As a bot programmer, it is your task to design and build winning bots,

robotic gladiators that are placed in an Arena for a battle to the death.  Using
a careful combination of offensive and defensive hardware and software, you
must build a bot that can survive the ordeals of combat in the Arena.

Thus, your objective in designing a bot is to make sure that the bot can
seek  out  other  bots  in  the  Arena  and  destroy  them  before  it  is  itself
destroyed.  Of course, the other bots in the arena will be trying to destroy
your  bot,  so  you  must  be  clever  and  strategic  while  building  and
programming.

’bot comes in two pieces: the ’bot Developer module, where you design
and equip your bots, and the ’bot Arena module, where you pit your bots
against  others.   Both  of  these  applications  are  completely  MultiFinder
compatible.   For  example,  you  can  load  bots  into  the  Arena  by  double-
clicking on them in the Finder, even when Arena application is already open.
You  can  also  run  Arena  battles  or  tournaments  in  the  background under
MultiFinder — when the combat is over, a small robot icon will flash over the
apple icon on the left of the menu bar to let you know that the combat has
ended.  ’bot is also System 7.0 compatible.

If you are running ’bot Arena under MultiFinder or System 7.0, and you
want to run a combat with a number of very large bots, you may get an “out
of  memory”  error.   If  this  happens,  you  should  increase  the  size  of  the
application’s  partition  (the  box  in  the  lower  right  corner  of  the  Get  Info
window) to 512K.  Under normal operation, or under System 6 Finder, there
should be no need for this change.

TheThe ’bot Arena  ’bot Arena ModuleModule
Arena Overview

All combat takes place in the Arena, which is a 272x272 square.  A bot
itself is circular, with a radius of 8 units.  Thus the logical size of the arena to
a bot is 256x256 units square.  The position (0,0) is the upper-left corner of
the arena, while the position (255,255) is the lower-right corner.  Angles in
the arena are defined in a clockwise direction, with 0° pointing right, 90°
pointing down, 180° pointing left, and 270° pointing up.  Time in the Arena is
defined in  units  known as ‘ticks’,  with each bot  executing 16 ‘Instruction
Units’ per tick.  Different instructions for your bot will take different numbers
of instruction units to be executed; adding A and B is simple and can be done
fairly quickly, but scanning a 10° arc of the Arena can take quite a bit of
time.



When you launch the Arena module, you will see the Arena window on
the left side of the screen and the Watcher window on the right.  The Arena
will  display  the  battle  from a  bird’s-eye  view as  it  progresses,  while  the
Watcher will show specific information about each of the bots in the Arena
and other Arena information.   If you wish to move the Watcher window, you
can move it like a normal window; if you wish to move the Arena window,
hold down the Option key and click anywhere on the window, then drag it to
wherever you want it.

Generally speaking, you can type Command-period to cancel any action
in  progress  (such as  a  running  battle)  and  to  cancel  any  dialog  or  alert
window.  If a dialog window is visible, hitting the Return key is the same as
clicking on the dialog’s highlighted button (usually the “Okay” button).

Combat Details:
During a battle, the loaded bots (those visible in the Watcher Window)

are randomly placed in the Arena; they are placed so that no two bots are
too near each other, however.  Time then passes one clock tick at a time,
with  all  bots  moving  and  computing  simultaneously,  executing  their
individual programs.  A bot is destroyed when its CPU has 0 durability left.  A
combat ends either when there is only one bot left alive, when no bot has
taken any damage in the last 5000 clock ticks, or when a total of 25000 ticks
have passed.  In the latter two cases the battle is declared a draw.

If a bot collides with one of the Arena walls it stops dead.  If two bots
collide, they collide semi-elastically (they “bounce” off of one another).  In
any collision, the involved bot(s) take damage proportional to the square of
their  velocities at  the time of  the collision.   Special  note:   Under certain
circumstances, two bots can lock their treads together, and neither will be
able to move at all — the treads are destroyed.  The first case where this can
happen is when two bots are touching each other, and a third bot collides
with one of them.  There is a small chance that two of the involved bots will
be crushed together in this collision and lock treads.  The second case is
when one bot is touching an Arena wall, and a second bot collides with the
first bot and the wall simultaneously (effectively wedging itself behind the
first  bot).   In  both  of  these  circumstances,  the  involved  bots  will  be
absolutely unable to move for the remainder of the battle.  The odds of these
occurrences  are  very  small,  but  you  should  be  wary  when  writing  your
bots — try to intelligently move away from any bots that are colliding with
you.  If you want to see what this looks like, you may be able to see bots lock
treads if you run 5 Suicides (a bot provided in the Tutorial) simultaneously.

There are a number of different weapons that damage bots in varying
ways.  The weapons and their descriptions (along with all other information 



about what makes up a bot) can be found in the manual section on the
’bot  Developer  application,  specifically,  the  section  dealing  with  bot
Architecture.

The Menus:
File

Open ’bot…
This will present you with a standard open dialog and allow you to select

assembled “.bot” files to be loaded into the Arena.  When a bot is selected
and opened, you will notice that it is being added to the Watcher window in
the background.  After 5 bots are in the Arena, the dialog will automatically
close.  Should you want to stop loading bots at any time, simply press the
Done button or type Command-Period.

Reload ’bot
This menu item is active only when a bot is  selected in the Watcher

window.  The bot currently selected will be reloaded from the disk.  This is
useful  when  you  have  been  running  a  combat  in  the  background  while
modifying one of the combatants in Developer.  After recompiling the bot,
you can Reload it into Arena before starting another battle.  The next version
of ’bot will  be able to automatically Reload bots for you, but this current
feature should allow you to switch between the two ’bot applications without
too much trouble.

Duplicate ’bot
This menu item is active only when a bot is  selected in the Watcher

window and less than five bots are in the Arena.  The bot currently selected
is cloned and added into one of the remaining slots in the Arena.

Close ’bot



This menu item is active only when a bot is  selected in the Watcher
window.  The bot currently selected is removed from the Arena, and other
bots will shift upward in the Watcher window to fill in a gap.

Empty Arena
This menu item is active only when there are bots in the Arena.  When

chosen,  all  bots  in  the Arena are removed as  if  each had been selected
individually and closed.

Preferences…
This menu item will bring up the Arena Preferences dialog that follows:

If you change a Preference here, the ‘world’ setting will be changed to
the  same  on/off  value.   Preferences  left  untouched  will  not  affect  their
matching ‘world’  settings, even if  they differ.   When you next launch the
application, all settings will  be as last set in the Arena Preferences dialog
(e.g. if Sound is off in the Preferences, but you turn it on in the world, it will
still  be off the next time you launch the application).   See the individual
world settings menu commands in the Arena menu below for details of the
individual items.

The one item that only appears in the Arena Preferences dialog, and not
in  the  Arena  menu,  is  the  “No  Personal  SICNs”  option.   Users  can  have
personalized icons for their bots to be displayed in the Arena, as detailed in
the Developer Overview.  However, there are many cases where you might
not want your personal icons to be displayed.  For instance, if you want to
run a bot against itself, you’d want to turn on the “No Personal SICNs” option
before loading in the bot.  This way, the default SICNs will be used, and the
two copies of your bot can be easily distinguished.

Tournament…



This menu item brings up the Tournament dialog, described in full detail
in the Tournament section below.

Quit
This menu item is used to leave the bot Arena module.  If a Tournament

is running, you will  be asked to confirm the cancelling of the Tournament
before the application will exit.

Edit
The edit menu is not used in the Arena, but is included for standard support
of Desk Accessories.

Arena

Start Battle
Begins a new battle between the bots currently in the Arena.
Stop Battle
Halts the battle in progress in the Arena.  If a Tournament is running, you

will be asked to verify that you wish to cancel the Tournament.
Pause Battle
Pauses  the  battle  in  progress  in  the  Arena.   To  continue,  select  this

again.
Graphics
Toggles the Arena display window on/off.  May be set permanently in the

Arena Preferences dialog.
Sound
Toggles the battle sounds on/off.  May be set permanently in the Arena

Preferences dialog.
Mega-Scans



Toggles display of  scanner ‘blips’  between normal (small)  and full-arc
(huge, takes longer to display, but allows you to see what your bot “sees”).
May be set permanently in the Arena Preferences dialog.

Mini-Bullets
Toggles  display of  bullets  between normal  (2x2 squares)  and mini  (1

pixel,  displays  much faster).   May  be  set  permanently  in  the  Arena
Preferences dialog.

Graphical Stats
Toggles  the  Watcher  window  between  Graphical  Stats  display  and

Numeric Stats.  See the Watcher Window section below for more detail.  May
be set permanently in the Arena Preferences dialog.

The Arena Window:
The Arena is where you actually see the ongoing Battle.  There are a

number of graphical effects in the Arena while the battle runs.  First, each
bot  is  displayed  by  one  of  5  small  iconic  representations  stored  in  the
application, and is animated as it moves around the Arena.  Also, if the bot
has a Shield, the icon will change somewhat when the shield is turned on.
Second,  fired bullets  will  fly  across  the  Arena at  their  set  speeds,  either
colliding with a bot or harmlessly hitting a wall.  Third, a bot that has a laser
will be shown firing it straight out as a two-pixel wide line from the edge of
the bot.  The beam will damage the first bot that it hits, or, if it strikes an
Arena wall, it will dissipate harmlessly.  Fourth, a grenade or explosive bullet
can cause an explosion.  An explosion is drawn with the actual radius of the
blast, damaging any (and every) bot it touches (see the figure below).  The
blast disappears within a tick of the explosion.  Fifth, a bot that is destroyed
will disappear in a quick explosion.



The Watcher Window:
All information on a given bot in the Arena is displayed in the Watcher

window to the right of the Arena.  The Watcher displays information on all
bots  in  the  Arena.   The  small-icon  representing  the  bot  in  the  Arena  is
displayed to the left of the bot’s name in its Watcher slot.  Below the name
you will see current statistics of the bot, updated as needed during a battle.
There are two different statistic displays, Graphical Stats and Numeric Stats.
The Graphical Stats display (see left figure below) consists of a bar for each
of the bot’s vital statistics.  Each bar shows a range of 0 to 200 for that
statistic.  The Numeric Stats display (see right figure below) shows the same
information using the actual numbers for the statistics.  A blank space in this
display indicates that the blanked component has been destroyed.  These
displays show all vital information on a given bot: Armor, CPU, Engine, Tread,
and  Battery  durability,  plus  the  current  Battery  Charge  (in  the  Graphical
Stats display, the smaller bar on the extreme right).



   

You may click on one of the bots in the Watcher window, and it will be
selected and inverted.  You may also select a slot in the Watcher by using the
Up Arrow and Down Arrow keys when the Watcher window is the frontmost
window.  There are a number of operations you can perform on a selected
bot (see the section on Menus above).  First, if you type Command-R, that
bot  will  be  reloaded.   Second,  if  you  type  Command-D,  that  bot  will  be
duplicated.  Lastly, if you type Command-W or simply the Delete key, that
bot will be closed and removed from the Arena.

The top section of the Watcher window handles other information on the
Arena.  “Ticks” indicates the number of clock ticks that have gone by in the
current  battle.   The  small  number  to  the  right  of  the  ticks  display  is
Tournament information, and is thus only shown if a Tournament is running.
It is the number of battles left to run in the current tournament, not including
the current battle.  If the tournament is single-elimination, this number may
be an over-estimation.  This is because, for example, a best-of-three series
between two bots will terminate after only two battles if the same bot wins
both.

The  scrollbar  is  the  Arena  Speed  control,  and  is  useful  for  carefully
examining certain bots in a running battle.   Moving the scrollbar towards
slow (by clicking on the right arrow, the space to the right of the thumb, or
dragging the thumb to the right and releasing) will slow the Arena down to
approximately 1/2 speed, 1/3 speed, 1/4 speed, etc.,  all  the way down to
about 1/10 speed.  (For those interested, what it actually does is waits from
1/60th of a second to 1/6th of a second before it runs a tick of the battle.)

Tournaments:
One  of  ’bot’s  most  powerful  features  is  its  ability  to  run  large

tournaments.  To set up and run a Tournament, select “Tournament…” from
the File menu.  You will be presented with the following dialog:



In the above example, we have already added 4 bots to the Tournament
List.  This is done by finding and double-clicking on a “.bot” file in the file list
on the left side, just like opening any file with a standard open dialog.  The
bot will then be added to the Tournament List on the right side, and will be
selected and highlighted.  A bot may also be selected in the Tournament List
simply by clicking on its name.  A bot that is selected may be removed from
the Tournament List by pressing the delete key.  You can also just double-
click a bot in the Tournament List to remove it from the list.

To  begin  the  selected  tournament,  click  on  the  Start  button  or  hit
Command-/.  To exit the tournament dialog without running a tournament,
click  the  Cancel  button  or  hit  Command-period.   You  can  access  the
Tournament  Preferences  dialog  by  clicking  the  Prefs  button  or  by  hitting
Command-P.  You can also type command 1, 2, and 3 to select the various
types of tournament if you do not wish to use the popup menu provided.

There are three types of Tournaments that you can run.  The first is a
Random Tournament, where each battle is a random selection of from 2 to 5
of the bots in the Tournament.   The second is a Round Robin Tournament,
where every possible combination of bots (2, 3, 4, or 5 at a time) is run in the
Arena.  The last is a Single Elimination Tournament, in which all bots in the
tournament are first  run through (optional)  preliminary seeding battles to
determine who will  make it  into  the elimination  rounds  (which  start  with
octafinals: the top sixteen seeded bots).  Once seeded, sets of one-on-one
elimination battles — a standard single elimination tournament — are run for
octafinals, quarterfinals, semifinals, and finals to determine the winning bot.
The type of  Tournament that will  be run is chosen from the “Tournament
Type” popup menu, as shown below:

To modify the settings for the tournament that you wish to run, click on
the Preferences button.  You will be presented with the following dialog:



The Tournament Preferences dialog lets you modify specific settings for
each type of Tournament.  Note that a “Round” is one battle between from 2
to 5 bots.

For the Random Tournament, you can set the number of bots in a Round,
the number of randomly chosen Preliminary Rounds, and the number of Final
Rounds.  If the number of Final Rounds is not zero (0), then the best n bots as
determined by the Preliminary Rounds (where n is the number of bots per
Round) are run against each other to determine the “true” winner of  the
tournament.  If the number of Final Rounds is zero, then the bots are ranked
solely based on their performance in the Preliminary Rounds.

For the Round Robin Tournament, you can set the number of bots in a
given Set of bots, and the number of Rounds that each Set is used.  The
tournament runs until a Set has been run using every possible combination
of bots in the tournament.

For  the  Single  Elimination  Tournament,  you  can  set  the  number  of
Preliminary Rounds that decide seeding for the Elimination Rounds, and the
number of Elimination Rounds per pair of bots to determine the victor of the
pair.  Note that in determining the victor of a pair, the computer will halt the
contest between two bots as soon as it can declare one bot the winner.  For
example, if you set 5 Rounds per pair, and one bot wins the first 3 Rounds in
a row, that bot is declared the victor of the contest immediately — the final 2
Rounds are not run at all.

This dialog also lets you set a maximum point value for bots entered in a
tournament.  You will not be allowed to add any bot to the Tournament List
whose point value is greater than this defined value.  If you have already
added bots to the Tournament List and you lower this maximum point value,
all bots whose values are greater than this new maximum are removed from
the  List.   See  below  for  more  information  on  bots’  point  costs.   If  the
tournament point value is set to zero (0), there is no limit on the costs of
entered bots.  This feature makes it easier for you to set up a tournament
for, say, “800-point bots and under,” or “1200-point bots and under”:  You
can design bots for any point limit you choose.



In a tournament, a bot earns one victory point for every enemy bot that
it outlasts in a battle.  Thus, if there are 5 bots in a battle, the last bot alive
earns 4 points  (for  outlasting the other 4 bots),  the second place bot,  3
points, and so on.  The first bot to die gets no points.  If a draw is declared,
none of the bots involved in the draw get any points for outlasting other bots
in the draw.  For example, if there is a tie between 2 bots in a 3-bot battle,
the destroyed bot will  have earned no points, and the two tying bots will
have earned 1 point each.  The final score listed for a bot in the tournament
results chart is the average number of points earned by that bot during the
tournament.



TheThe ’bot Developer  ’bot Developer ModuleModule
Developer Overview

The Developer is where you actually build and program your bots.  All
bot  programming  is  done  in  the  Code  Editor,  a  text-editor  environment.
Programming  may  be  done  in  either  ’bot  Basic  or  ’bot  Assembly.   Both
languages use the same constructs for defining constants and variables; only
the actual bot code itself  is  language-dependent.  We suggest that users
intent on eventually showing/distributing their bot code to others use Basic,
because it  is  much easier to read and understand.  In the end, bot code
generated by the Basic compiler is roughly equivalent in speed to code that
can  be  programmed in  Assembly.   Thus,  even  experienced  programmers
should feel comfortable using ’bot Basic.  However, because we know that
there are hackers out there who will want complete control over their bots,
we also allow development in ’bot Assembly.  A Tutorial for the ’bot Basic
language is provided with this manual.  It includes 6 bots and explanations of
what they do.  Assembly language equivalents for these Basic bots are also
provided for those who are interested.

All architectural modifications to your bots are made in the Architecture
Editor.  You can define weapons, armoring and durability, defenses, and other
physical characteristics of your bots there.  Note that every feature added to
a bot increases the bot’s point-cost.  Since tournaments have a set maximum
point value for the bots entered in them (discussed above), you should pay
close attention to your bots’ total point-costs.

The one modification that cannot be made in the Architecture Editor is
customizing your bots’ icons.  If you wish to create your own icons, use any
third-party icon editor  or  ResEdit  to create “SICN” resources.   Open your
bot’s code file (the one with the program in it, not the “.bot” file), and save
the SICN resources there.  Save your bot’s normal icon as ID#400, and its
shield icon (if you wish to have a special icon for when the bot’s shield is on),
as ID#401.  ’bot will take care of the rest.

There  are  many  shortcuts  available  within  the  Developer.   Generally
speaking,  you  can  type  Command-period  to  cancel  any  dialog  or  alert
window.  If a dialog window is visible, hitting the Return key is the same as
clicking  on  the  dialog’s  highlighted  button  (usually  the  “Okay”  button).
Within any of the Architecture Editor dialogs, you can type Command-X to
select that button or box, where ‘X’ is the first letter of the button’s name.

The Menus



File

New
Opens a brand new bot code editing window.
Open…
Lets you open a bot code file and Architecture settings from disk.  Note

that bot code files are simply standard text files with some added resources
for Architecture settings, and any text file less than 32K may be opened.
Thus, you may use any text editor you like.

Close
Closes the currently open bot code file and Architecture settings.  If any

changes have been made since the last time you saved, the application will
ask if you wish to save them.

Save
Updates the bot code file and Architecture settings on disk.  If the file

hasn’t yet been named, the application will prompt for a name under which
to save the file, like Save As below.

Save As…
Lets you save the open bot code file and Architecture settings to disk

under a new name, or define the name of an untitled document.
Revert
Wipes out all changes since your last save by reloading the bot code file

and Architecture settings from disk again.
Preferences…



This  menu  item will  bring  up  the  Developer  Preferences  dialog  that
follows:

There are three possible choices for what will happen as soon as ’bot
Developer is run.  It can do nothing, open a new (Untitled) bot, or present
you with the Open File dialog (as if  you had chosen Open from the “File”
menu).  The “At startup time” radio buttons control which of these will occur.

“Auto-save code” means to automatically save the source code file (as if
you’d  typed  Command-S)  whenever  the  code  is  successfully  assembled
(Command-K).  “Auto-create ‘.bot’ file” means to try and save the assembled
bot as “botname.bot” where “botname” is the name of the currently loaded
bot.  If a file with that name already exists, you will be asked whether you
want to overwrite the existing file.  However, if “Auto-overwrite existing file”
is  selected,  you  will  not  be  prompted  — the  new  file  will  automatically
replace the old one.  If “Auto-create” is not selected, you will be presented
with a Save File dialog every time you successfully Assemble your bot.

Page Setup…
Standard Page Setup dialog box.
Print…
Standard Print dialog box.
Quit
Quits the Developer module.  If there have been any changes to the bot

code or Architecture settings, the application will ask you if you wish to save
them before exiting.

Edit



Undo
Undoes the last editing action taken.  Only affects the editing window.
Cut
Selected text  is  copied to  the  Clipboard and then removed from the

editing window.
Copy
Selected text is copied to the Clipboard.
Paste
Text stored in the Clipboard is inserted into the editing window at the

insertion point.  If text is selected when Paste is executed, the selected text
is deleted and replaced by the Clipboard text.

Clear
Selected text is deleted from the editing window.
Select All
Selects all text in the entire document.
Find…
Brings up a dialog (below) allowing text search of the open document

from the insertion point forward.
Find Again
Continues searching from the insertion point or end of the selected text

for the next instance of the same word.



Grab Find Text
Copies the currently selected text into the Find buffer, as if that text had

been typed in at the Find dialog.
Replace
Replaces the selected text with the contents of the Replace buffer.
Replace Every
Replaces every occurrence of the text in the Find buffer with the text in

the Replace buffer.  Starts at the top of the file.
Grab Replace Text
Copies the currently selected text into the Replace buffer, as if that text

had been typed in at the Find dialog.

The following is the Find dialog:

The text to be searched for and the (optional) text to replace that text
with can both be entered here.  If the Case Sensitive box is checked, only
exact text matched will be found; if not, the search ignores the difference
between upper-case and lower-case letters.  From Top begins the search from
the top of the file, rather than from the insertion point.

Build

Check Syntax
This menu item instructs the Developer to parse the open bot code file.

If an error is found in the file, an error alert will be displayed that details the
syntax error.  Otherwise, the Build menu will  dehilite when the Developer
finishes parsing with no problems found.



Assemble ’bot
This menu item instructs the Developer to check the syntax of the open

bot  code file,  like  Check Syntax above,  but  if  no  errors  are  found it  will
prompt you for a file name under which to save your fully Assembled bot.
After supplying a name, or leaving the name already there, the Developer
will generate a “.bot” file that may be loaded into the Arena, ready for battle.

Window

Architecture Editor
This  menu item brings  up  the  main  Architecture  Editor  dialog.   This

dialog is described below.
Zoom Code Window
This menu item is the same as clicking in the Zoom-Box of the editing

window; it will  zoom the window between its last set size and the largest
possible size the window can be made.

The Architecture Editor
The Architecture Editor can be brought up by pressing Command-H; the

main architecture dialog will be presented.  From this dialog you may edit the
different characteristics of your bot and see your bot’s overall point-cost.  By
pressing the various buttons in the main dialog, sub-dialogs will be brought
up for editing particular sets of architectural characteristics.  Note that if you
make changes in a sub-dialog and decide that you don’t want them, you may
press  the  Cancel  button  to  undo  those  changes  and  return  to  the  main
dialog.  However, once you press the OK button in a sub-dialog, the changes
you make become permanent, and you must manually change them back, or
Revert  the  file,  if  you  later  decide  against  the  changes.   To  leave  the
Architecture dialog, simply press the Okay button.

The following sections contain descriptions of  the various pieces that
make up your bot’s architecture, but, in general, the best way to learn the
architecture choices is to simply go and play with it.

Weapons:
A given bot may have two distinct weapons, found under the “Offense”

section of the Architecture Editor.  There are three weapon types:
Projectile:



Fires a bullet at a specified angle.  The bullet has damage value, speed,
etc, depending on the definitions of the particular weapon (see below).  The
bullet will strike and do damage to the first thing that it encounters, be it a
bot or an arena wall.  The weapon takes a certain amount of time to reload
between shots.  Relevant characteristics:

Damage/Projectile:  The  number  of  damage  points  inflicted  upon  an
enemy bot hit by a bullet from this weapon.

Explosive:  On impact, bullet explodes like a grenade (see below for an
explanation of grenade explosions).

# of Projectiles:  The number of bullets held in the weapon’s magazine.
When all  of  the  bullets  have been used up,  the  weapon will  no
longer fire.  You may choose to have unlimited bullets.

# of Ticks to Reload:  The amount of time it takes for the weapon to
reset itself after firing a shot.  If the bot attempts to fire this weapon
again before this time has elapsed, the weapon will not fire.

Velocity:  The speed of a fired bullet, in pixels per tick.
Grenade:
Flings a grenade at a specified angle, targeted to land at a specified

distance.  The grenade will not hit any robots — it goes over them — and will
stop once it has travelled the specified distance.  After a pre-defined time,
the grenade will explode, damaging all robots within its blast radius.  If the
grenade  is  an  impact  grenade  (see  “Ticks  Until  Detonation,”  below),  the
grenade will  explode upon reaching its target distance, or upon striking a
wall.  If an affected bot’s internal components are exposed (i.e. by a lack of
armor), all of the bot’s components will take damage. Note that a bot can be
hurt by its own grenade.  The weapon takes a certain amount of time to
reload, and it is generally slower to reload a grenade than a bullet.  Relevant
characteristics:

Damage/Grenade:  The  number  of  damage  points  inflicted  upon  an
enemy bot that is caught in the grenade’s blast.

Blast  Radius:   The  radius  of  the  grenade’s  explosion.   All  bots
intersecting or within the blast radius at the time of the explosion
take damage.

#  of  Grenades:   The  number  of  grenades  held  in  the  weapon’s
magazine.   When  all  of  the  grenades  have  been  used  up,  the
weapon  will  no  longer  fire.   Note  that  the  point  costs  for
Damage/Projectile and Blast Radius (above), as well as for selecting
Impact Grenades (below) are the point costs per grenade, so the
number of grenades can drastically affect the weapon’s cost.

# of Ticks to Reload:  The amount of time it takes for the weapon to
reset itself after launching a grenade.  If the bot attempts to fire 



this same weapon again before this time has elapsed, the weapon will
not fire.

Maximum  Distance:   The  maximum  possible  distance  to  which  the
weapon can fling a grenade.  If the bot attempts to fire at a distance
greater than this maximum, the grenade will fall to the ground at
this maximum distance.

Velocity:  The speed of a launched grenade, in pixels per tick.
Ticks Until Detonation:  The number of ticks between the launching of

the grenade and its explosion.  There is no point cost associated
with this characteristic: you may set any delay time you like without
cost.   However,  you  may  also  select  “impact”  grenades,  which
explode upon reaching the specified distance (or  upon striking a
wall).  Impact grenades add a small point cost per grenade.

Energy:
This  weapon  fires  a  laser  at  the  specified  angle.   The  beam  hits

instantaneously when it is fired — there is no “projectile velocity.”  The first
bot it hits takes damage as follows:  If the bot has armor, some of the beam’s
energy is scattered based on the armor’s reflectance value and some of the
remaining energy is then absorbed by the armor — the more armor a bot
has, the more energy is absorbed before the beam cuts through to the inside
of the bot.  One-quarter of the energy absorbed by the armor damages the
armor.   All  remaining energy damages an internal  component of  the bot.
Note  that  shields  also  absorb  energy  from energy  weapons  just  as  they
absorb the damage done by other types of weapons.

An energy weapon never runs out of shots, but each shot drains the
bot’s battery.  If the battery’s charge is not sufficient, the weapon simply will
not fire.  When fired, the weapon takes a certain amount of time to charge
before the laser is generated, but it can be fired multiple times in immediate
succession without having to wait to “reload.”  While the weapon is charging,
the CPU is locked — no instructions are executed.

Energy Consumption:  The amount of energy drained from the battery
every time the weapon is fired.  If the weapon requires more energy
than is stored in the battery at firing time, it won’t fire.

Energy Beam Focus:  A Wide Focus beam does damage equal to half of
the  weapon’s  Energy  Consumption;  a  Medium Focus  beam does
equal damage; a Narrow Focus beam, double damage.

# of Ticks to Fire:  The number of ticks it takes for the weapon to charge
before the beam is released.  This is effectively the delay between
the instruction to fire the weapon and the time the weapon actually
fires.  However, energy weapons have no cycle times 



(“Ticks to Reload”) like the other weapons do: they may be fired multiple
times in immediate succession.

Damage:
Your bot is encased in armor.  Only when the external armor has been

destroyed  can  your  bot’s  internal  components  be  damaged  by
projectile/grenade  weapons;  energy  weapons  bore  through  armor  and
damage internal components as well as weakening the armor.  A bot has four
internal components: CPU, Engine, Battery, and Treads.  Each component can
withstand a  certain  amount  of  damage before  it  is  destroyed,  called  the
component’s Durability.  If the Treads are destroyed, the robot will slow to a
stop and cannot move further.  If the Battery is destroyed, energy weapons
and  shields  will  not  function.   If  the  Engine  is  destroyed,  you  cannot
accelerate,  and mechanical  (i.e.  projectile  and grenade) weapons will  not
function.  And, if the CPU is destroyed, your robot has been eliminated.  If the
CPU has taken damage equal to half of its initial Durability, the Scanner and
Repair mechanisms will begin to have random failure.  They will still work
correctly, but they will take an extra amount of time to successfully complete
their function.  The average delay for a damaged Scanner is 4 ticks; for a
damaged Repair system, 8 ticks.  If you purchase Repair capabilities, your
robot can repair damage that has been done to its internal components.

Your robot may also be equipped with a shield (also known as a force
field) that absorbs all forms of damage.  However, the more powerful the
shield is, the faster it drains your battery’s energy.  It may be turned on or off
by a single command, and will turn off automatically if the battery is drained
or destroyed.

Within the Architecture Editor, damage characteristics are divided into
two categories: Durability and Protection.

Durability refers to the amount of damage that can be sustained by an
internal component before it is destroyed.  The four internal components are
Main CPU, Engine, Battery, and Treads, and you may set the durability value
for each of these independently.

Protection characteristics  are  those  that  prevent  damage  to  the
internal components.  There are two basic types of protection, Armor and
Shield.  Armor has two relevant characteristics:

Damage Points:  The total number of damage points that the armor can
withstand before it is destroyed.  Remember that energy weapons
can bore through armor to the bot’s interior without damaging the
armor itself.

Reflectance %:  The percentage of the energy (and damage) of a laser
beam that is reflected away from the bot (doing no damage) if it is
hit by an energy weapon.  If the armor is destroyed, the reflectance
value immediately drops to 0.



A Shield  absorbs  a  certain  number  of  damage points  from every  hit
(including energy weapons and collisions) sustained by your bot.  It must be
turned on at the time of the hit to be effective.  Relevant characteristics:

Damage/Tick:  The amount of damage that the shield will absorb from
each hit.

Efficiency:  The amount of energy that the shield drains from the battery
every 10 ticks (while it is turned on) is proportional to the amount of
damage that the shield can absorb.  A Low Efficiency shield drains
twice as much energy as it absorbs damage; a Medium Efficiency
shield drains an equal amount; and a High Efficiency shield drains
half the amount.

Sensors:
You can use your scanner to look for enemy bots.  You scan at a given

angle and the closest bot located within scanwidth/2 degrees of that angle
will  be seen by your scanner (scanwidth is  the width of  the scanner you
purchased).  This scanner will find a bot within the angle if the scan beam
hits anywhere in the center 10 pixels of an enemy (16-pixel diameter) bot.
The angle and distance returned are to the center of the scanned bot.  If the
center of the bot is not within the scan beam (this is possible because the
scan will lock onto any of the bot’s center 10 pixels), then the angle will be to
the scanned point closet to the bot’s center.  Information on the direction
and distance to closest scanned bot is placed into the Sx registers (detailed
in the tables at the end of this document).  Relevant scanner characteristics:

Degrees/Scan:   The  size  of  the  arc  swept  by  the  scanner  in  one
activation (also called “scan width”).  The arc centers on the angle
specified in the Scan instruction.  Note that a “0 degree” scanner is
not the same as no scanner: the beam simply must strike a target
directly in order to successfully spot it.

Ticks/Degree:  The speed of the scanner.  One activation of the scanner
takes roughly 2 ticks plus another amount.  For Slow scanners, this
amount is twice the number of Degrees/Scan; for Average scanners,
it’s equal to the number of Degrees/Scan; for Fast scanners, half the
number.

Range:   The  maximum  distance  at  which  the  scanner  will  function.
Enemy bots further than this amount away from the scanning bot
will not be picked up by the scanner.  If you do not wish to have a
scanner, select a range of 0 pixels.

You may also purchase Intelligent Damage Recognition (IDR) for your
bot.  IDR for Damage Type places in register D1 the type of damage last
taken (see below for details on damage types).  IDR for Damage Direction
places in register D2 approximately what direction the damage came from, 



rounded to the nearest axis.  That is, it will return 0, 90, 180, 270 as a
rough estimate of the direction from which the bullet (or laser) was coming.

The Ax registers, A0–A4, contain the Durability left for your Armor, CPU,
Engine, Battery, and Treads (in that order).  Register D0 contains the sum of
the five Ax registers, and is thus your bot’s current total Durability value.
When  programming  in  Basic,  you  may  use  mnemonics  for  all  of  these
registers.  The mnemonics are given in a table at the end of this document.

Maintenance:
Your  bot  may  repair  damaged  internal  components  using  its  Repair

mechanism.  When activated, the repair system takes over control of the
CPU for the requested number of 10-tick time units and repairs the requested
internal component.  You can set the rate of repair (in damage points per 10
—tick unit), and you can specify which of the four internal components (CPU,
Battery,  Engine,  Treads)  the  repair  unit  can  fix.   The  repair  mechanism
cannot  restore  the  Durability  of  a  component  to  a  level  above  that
component’s original Durability value.

The  repair  mechanism  will  fail  immediately  (i.e.  the  program  will
continue and nothing will have been repaired) in the following circumstances:
the bot is moving and Repair Engine or Repair Treads is requested; the shield
is on and Repair Battery is requested; the Repair mechanism is not capable
of repairing the requested component.

Movement:
To move, you set your bot’s target X and Y velocities, and your bot will

accelerate  or  decelerate  to  reach  the  target  velocity  based  on  the
acceleration and deceleration rates purchased.  Velocity range is from -255
to  255,  and  values  higher  or  lower  are  truncated  to  -255  and  255
respectively.   A  velocity  of  64  corresponds  to  a  1  pixel  per  clock  tick
movement rate.

Should  a  bot  collide  with  a  wall  or  another  bot,  it  will  take  damage
proportional to the square of the collision velocity and collide semielastically.
The braking system of a bot kicks in immediately after a collision and slows
the bot to a halt, as if a Velocity 0, 0 command had been executed.  A VEL
(or Velocity) command from the bot’s program will override this braking, and
the bot’s velocity will be changed normally.

To use the command-key shortcut to access the Movement sub-dialog,
type Command-V (where you would normally use M, the first character of the
word “Movement”).

Battery:
The Battery provides any energy that the bot needs beyond that used by

the CPU.  Specifically, it is used by Energy Weapons and by the Shield.  If 



your  bot  has  neither  of  these  installed,  it  does  not  need  a  Battery.
Relevant characteristics:

Maximum Capacity:  The maximum amount of energy that can be stored
in the Battery at any given time.  At the beginning of a battle, the
Battery is charged to its maximum capacity.

Recharge:  The Battery will recharge by this many units every 20 ticks
that  the  battle  runs.   It  cannot  recharge  to  a  level  above  its
maximum capacity.

The Code Editor
For flexibility of style and level of programming, users can program in

two supplied languages: ’bot Assembly and ’bot Basic.  If you write your code
in Basic, it will be compiled into Assembly before it is saved to disk.  As in
any  compiled  language,  ’bot  Basic  in  certain  cases  will  not  be  as  well-
optimized as carefully written ’bot Assembly, but we have worked to make
Basic  fast  enough  that  bots  written  in  Assembly  will  only  have  a  slight
advantage, if any.  However, just because a bot is programmed in Assembly
does not mean that it has any better chance of winning; it is a combination
of strategy and architecture that will make a good bot.  Overall, we highly
recommend  that  inexperienced  programmers  write  their  robots  in  Basic
rather  than  in  Assembly,  simply  because  Basic  programs  are  easier  for
people to read and write.  If you have little or no programming experience,
we also highly recommend that you read through the Basic Tutorial provided
with ’bot.

Two quick comments need be made about the Developer.  The code for
your bot can be as long as 32K in size, although that is more than should
ever be needed.  A limit of 8192 is placed on the number of Assembly/object
instructions  in  your  code.   Again,  this  is  far  more  than  should  ever  be
needed.

Compiler Directives:
A given program is delimited by three directives that tell the compiler

where data begins, where data ends and code begins, and where the code
ends.  The program should start with the “#DATA” directive.  This is followed
by the  declaration  of  all  variables  (DEFs)  and constants  (EQUs)  used.   A
variable is declared as follows:

DEF VARIABLENAME {INITVAL}
The INITVAL is an optional initial value for the variable to start at when

the program runs.  If no INITVAL is given, the variable is set to default to 0.
Further, you may define constant identifiers which will  be substituted into
your program at compile-time.  A constant is declared as follows:

EQU CONSTANTNAME <NUMBER>



When  you  compile  your  program,  the  compiler  will  search  for  all
instances  of  CONSTANTNAME  and  replace  them  with  the  number
‘<NUMBER>’.  Thus, you may declare a constant like SCAN_INCREMENT to
be equal to 7, and use it everywhere in a program.  If you later decide to
change the increment  to 8,  you need only  change the value  in  the EQU
statement, and the new value will be used throughout the program when you
recompile  it.   Additionally,  EQU  directives  may  be  combined  in  simple
expressions, such as:

EQU SCANRANGE 14
EQU SCANWIDTH 5
EQU SCANJUMP (SCANRANGE+SCANWIDTH)/2

You may use complex values like the above as long as every constant
that  you reference has been declared above the one being defined.  For
example,  you would  get  an  error  above if  you defined  SCANWIDTH after
defining SCANJUMP instead of before.

Note that if you do not use any variables or constants, you need not
start  with the #DATA directive.   After  the data segment  (if  there is  one)
comes  the  code  segment,  delimited  by  the  “#CODE”  directive  and  a
language name, as in:

#CODE ASM
The keyword “BASIC” should replace “ASM” if your code is in Basic and

not  in  Assembly.   Following  the  #CODE comes  your  program,  which  will
control the operation of your bot in the Arena.  A given line in a program can
be a blank line, a comment, a jump label, or an instruction followed by its
arguments.   Blank  lines,  extra  spaces  or  tabs,  and  anything  between  a
comment and the end of the line that it’s on are ignored by the parser.

At  the  end  of  your  program,  after  your  last  line  of  code,  place  the
“#END” directive to tell  the compiler that it  has reached the end of your
program.

You can define a jump label in your code by putting “:LABEL” in your
code on a line by itself (although it may be followed by a comment), where
LABEL is the identifier for that jump label.  Note that the label is immediately
preceded by the colon (‘:’) character, with no intervening spaces.  See the
JMP instruction (in Assembly) and the GOTO command (in Basic) below for
more information on what jump labels are for.

The comment delimiter is  the exclamation-point (‘!’)  character,  which
can be placed anywhere on a line.  Anything after the ‘!’ will be ignored by
the compiler, and thus you can use it to describe the purpose of a variable or
a line of code in your program for your own future reference.

The bot Assembly and bot Basic languages are entirely case-insensitive;
all lower-case characters are converted to upper-case during the compilation
process.  For example, ScanWidth and SCANWIDTH reference the same thing,
and both are perfectly valid.



Identifiers  (variable  names,  constant  names,  and  jump  label  names)
must consist of alphanumeric characters (‘A’-’Z’, ‘0’-’9’), underscores (‘_’),
and  dollar  signs  (‘$’)  only.   The  first  character  of  an  identifier  must  be
alphabetic (‘A’-’Z’ only).  The first twelve characters of the identifier are used
by the  parser  for  identification,  and  the  rest  are  ignored.   Therefore,  be
aware  that  the  identifiers  DAMAGE_TAKEN and  DAMAGE_TAKEN_RECENTLY
are the same as far as the parser is  concerned (but “DamageTaken” and
“DamageTakenRecently” are different).  Also, no two-character identifiers of
the form LN, where L is a letter and N is a number, are allowed — these are
reserved for register names.

’bot Basic:
The  bot  Basic  language  is  a  melding  of  standard  Basic  and  newer

programming  styles.   When  programming  in  Basic,  you  begin  with  your
#DATA  section  as  you  would  in  Assembly,  using  the  DEF  and  EQU
statements.  To start your bot’s code section, use ‘#CODE BASIC’ to tell the
compiler you will be programming in Basic.  End the program with ‘#END’.
The ’bot Basic language uses the same ‘:LABEL’ directive for its GOTO labels
as Assembly uses for its JMP labels.  Also, long lines may be extended onto a
new line by placing an ‘&’ at the end of the line and continuing to code on
the succeeding line.  The following is a list of Basic commands.  There is a
less detailed version of this list in a Table at the end of this document.

Flow Control:
Goto <LABEL> Executes  code  starting  at  the  line  of  code  right

after the jump label LABEL appears.
Gosub <LABEL> Executes code starting at the line after LABEL and

ending at the next Return, at which point execution returns
to the line immediately following the Gosub.

Return Returns  and executes  code following the  GOSUB
most recently executed.  Note that  GOSUBs within  GOSUBs
are allowed.

If (<EXPR> <CMP> <EXPR>) Then <CODE> { Else <CODE>}
<CMP> is one of ==, <, <=, >, >=, or <>
<EXPR> is an expression as described below
<CODE> is any legal Basic command, including

another If or a FOR-NEXT loop.
If  the  comparative  is  true,  then  the  code

following the Then is executed.  If the comparative is false,
the  code following the  Else (if  specified)  is  executed.   To
have more than one line of code after a Then or an Else, use
the BEGIN-END construction (discussed below).



You may go to a new line before the Else section
if you like without adding an ‘&’ character to the end of the
line.  For example: 

If (X <> Y) Then X = Z
Else Y = Z

For <VAR> = <EXPR> To <EXPR> { Step <EXPR> }
Iterates  through  the  code  between  the  FOR

statement  and  its  matching  Next statement  (below),
incrementing <VAR> by 1 at the end of each iteration (or by
the amount specified by the Step term if  Step is specified),
until  <VAR> is greater than the expression specified after
the  To.  The code between the  For and the  Next can be of
any length and can include other FOR-NEXT loops.  Negative
Steps are not allowed in this version of ’bot Basic.

Next <VAR> Marks  the  end  of  the  For loop  on  variable
<VAR>; it increments <VAR> by the amount specified in the
For statement, and loops back to the For statement to test if
another iteration should be performed.

While (<EXPR> <CMP> <EXPR>)
   <CODE>

(<EXPR> <CMP> <EXPR>) is exactly the same
as for  IF-THEN statements (above).   If  this  comparative is
true, the code immediately following the WHILE statement is
executed.  The comparative is then tested again, and this
process repeats until the comparative is false, at which time
program execution  continues  on  normally.   To  have  more
than one line of code in a WHILE loop, use the BEGIN-END
construction (discussed below)

Begin A  Begin statement  marks  the  beginning  of  a
block of code that is to be treated as if it were a single line.
For  example,  in  the  statement  If  (A==0)  Then  <code>,
<code> must  be  a  single  Basic  statement.   To  expand
<code>  to  more  than  one  line  of  Basic,  place  a  Begin
statement  before  the  lines  of  code,  and  a  matching  End
statement after them.  In this example, the result would be:

If (A==0) Then or If (A==0) Then Begin
Begin <code>

<code> <more code>
<more code> End

End
These two examples are exactly equivalent, and

simply illustrate two different formatting styles.  The 



various indentations are optional, of course.  This construction is also
useful for WHILE loops.

End An  End statement marks the end of a block of
code started with a  Begin statement (above).  Every  Begin
must be followed by a matching End, and vice versa.

’bot Control:
Scan Angle <EXPR> Send out a scanner pulse at the angle <EXPR>.

Register  S0 is set to 1 if  a bot is found, and in that case
register S1 is set to the angle to the enemy (in degrees) and
S2 to the distance to the enemy (in  pixels).   If  no bot  is
found, S0 is set to 0 and S1 and S2 are undefined.

Repair <EXPR1> For <EXPR2>
<EXPR1> is  the  system  to  be  repaired  (see

constants defined below)
<EXPR2> is how long to repair in 10-tick units.

If  <EXPR2> is less than 0 it is assumed to be 0, and if it is
greater than 25, it is assumed to be 25 (which equals 250
ticks of repair).

If you don’t have the repair mechanism installed
for the system you wish to repair, nothing happens.  Also, if
you try to repair your engine or treads while moving, or if
you try to repair your battery while your shield is on, nothing
happens.

Fire Weapon <EXPR> {, Angle <EXPR1>} {, Distance <EXPR2>}
Fire weapon #<EXPR> at angle <EXPR1> and at

distance <EXPR2> (which only needs to be specified if using
a Grenade-type weapon).  If <EXPR> is not equal to 1 or 2,
this  command does  nothing.   If  Angle or  Distance is  not
specified, it will default to whatever the last value was for
that term (Thus to fire repeatedly you could specify all of the
arguments on the first shot, and only “Fire Weapon 1” on the
subsequent shots).

If  you  can’t  fire  the  specified  weapon  (if,  for
example, you didn’t have that weapon, or if you were out of
bullets  or  energy),  then nothing happens.   If  the  weapon
requires a cycle time before firing twice in a row (projectile
weapons and grenade launchers), and that time has not yet
elapsed, then nothing happens.  You may use Wait Weapon
(below) to prevent misfires of this type.

Shield <EXPR> Turns the shield On or Off (1 or 0, respectively).
If you don’t have a shield, nothing happens.

Velocity <EXPRX>, <EXPRY>



Accelerates (or decelerates)  the bot as quickly
as possible to <EXPRX>, <EXPRY> velocity.  Both arguments
must be specified.

Wait <EXPR> Waits for <EXPR> ticks to go by.  OR:
Wait Weapon <EXPR> Waits until Weapon #<EXPR> has reloaded.  If

<EXPR> is not equal to 1 or 2, this command does nothing.
This  instruction is  useful  for  synchronizing a firing routine
with the weapon cycle time.

<EXPR> definition:
Any  variable  (DEF),  number  (EQU or  literal),  or  mnemonic  (register

name — see below) is an expression.
If A, B are expressions, then the following are also legal expressions:

(A) (order of operation)
-A (negation)
Sin(A) (Sine(A) * 256  (an integer))
Cos(A) (Cosine(A) * 256 (an integer))
Abs(A) (the absolute value of A)
Random(A) (random number between 0 and (A-1))
A + B (addition)
A - B (subtraction)
A / B (division)
A * B (multiplication)
ArcTan(A, B) (ArcTangent(A/B) where A = Y, B = X)

The following constants are also defined for your use as expressions:
For Shield:

ON
OFF

For Repair:
C_CPU
C_ENGINE
C_BATTERY
C_TREADS

For Damage (test versus $DAMAGETYPE):
C_ENERGY
C_BULLET
C_GRENADE
C_COLLIDE

For example:



Shield ON
Repair C_CPU For 5
If ($DAMAGETYPE <> C_COLLIDE) Then Goto RunAway

All read-only registers (as specified in Assembly section of the manual,
which should be read for full details) are accessible from BASIC, but  R0-R9
are not.  For specifications and complete definitions of the Register variables
that you can (and need to) use, read the “Assembly Registers” section in the
tables below.  However, you are not required to use these register names if
you do not wish to.  The Basic Mnemonics Table (also below) lists equivalent
mnemonics that you can use instead, although you should still look in the
Assembly Registers section for descriptions of the information stored in each
register.

The  BASIC  compiler  is  fairly  smart,  and  it  will  produce  optimized
assembly code wherever possible.  A statement like “X = Y+X+3*5” is made
into the fastest possible assembly code (in this case, the instructions created
are  “ADD  Y,  X”  followed  by  “ADD  15,  X”).   However,  be  aware  that  a
statement  like  “X  =  Y+(2*X*Z)+(2*X*Z)”  is  not  fully  optimized,  and  you
should  probably  use  two  statements,  “TEMP  =  2*X*Z”  and  “X  =
Y+TEMP+TEMP”  (or  similar),  instead  if  you  want  to  have  fully  optimized
code.

Double negatives are removed from the code (--X simply becomes  X),
constant  expressions  are  evaluated  where  possible  (3+X+5*2 becomes
X+13),  additions  of  0,  and  multiplications  by  1  are  removed,  and  the
resulting assembly code has “CLR X” rather than “MOV 0, X” where possible
(CLR takes less time to execute than a MOV).  A few other optimizations are
made as well.  Generally speaking, there is no great disadvantage to using
BASIC against  enemy bots  written  in  Assembly,  and BASIC programs,  for
most people,  are much easier to read and write than assembly language
programs.

’bot Assembly:
While many of the ’bot Assembly commands are ‘standard’  assembly

code commands, many of them are specific to bot operations.  All Assembly
code is written one line per instruction, in the form:

MNEMONIC {ARG1 {, ARG2}}
The  arguments  ARG1 and  ARG2 are  dependent  upon  the  particular

instruction; some instructions have no arguments, some have one and others
have  two.   The  list  of  Assembly  instructions,  what  they  do,  and  what
argument(s) they take can be found in the tables presented at the end of this
document.

For those who know Assembly language in one form or another, note
that no indirect addressing is allowed.  That is, you can only directly address
a  variable  by  using  a  DEF command  described  later.   In  addition,  no
arithmetic may be performed on an argument in an instruction, so the 



following  would  be  invalid,  assuming  that  LAST_ANGLE is  a  variable
rather than a constant:

MOV LAST_ANGLE+5, SCAN_ANGLE
Instead, you’d do the following:

MOV LAST_ANGLE, SCAN_ANGLE
ADD 5, SCAN_ANGLE

Various instructions of bot Assembly place return values in special read-
only registers which are described below.  Further, ten scratch registers, R0–
R9, exist for your use and are both readable and writeable.  The instruction
to fire a weapon (FIR) requires that its parameter(s) be placed into certain of
these registers before they are executed (again, documented in the tables
below).



AppendixAppendix A::
Assembly Instructions:

In the following instructions, the letters A and B are used to denote an
EQU,  DEF,  or  register  label,  or  a  literal  constant;  the  letter  C  is  used  to
denote  a  jump label.   Note  that  although instructions  like  ABS take  two
parameters, a statement like “ABS A, A” is perfectly legal, and A will be set
to its own absolute value.

There  are  16  Instruction  Units  (I.U.’s)  per  clock  tick.   Different
instructions  take  varying  amounts  of  time  to  execute,  based  on  how
complicated  the  instruction’s  function  is.   The  number  of  I.U.’s  for  each
instruction is given in boldface after the instruction in the table below.  Note
that  this  information  is  really  only  useful  to  people  trying  to
synchronize/optimize  their  bot  Assembly  code  to  an  extreme degree.   In
normal usage, this information should be used just to get an idea for how
long some operations are going to take during a battle.  The time for the SCN
instruction does not include the time that the scanner itself uses to effect the
scan;  details  on  scanning  times  can  be  found  in  the  section  on  bot
Architecture, above.

Memory Instructions:
CLR B 4 Sets A to 0 (functionally equivalent to MOV 0, A).
MOV A, B 8 Sets B to the value of A.

Mathematical Instructions:
ADD A, B 16 Adds the value of A to B.
SUB A, B 16 Subtracts the value of A from B.
MUL A, B 20 Multiplies B by the value of A.
DIV A, B 20 Divides B by the value of A.  B is then rounded down.
NEG A, B 8 Sets the value of B to be –A.
ABS A, B 8 B is set to the absolute value of A.
RND A, B 32 B  is  set  to  a  random  number  between  0  and  (A-1),

inclusive.
SIN A 80 R0 is set to SINE(A°) * 256.
COS A 80 R0 is set to COSINE(A°) * 256.
ATN A, B 160R0 is set to ARCTAN(A/B).

Unconditional Jump Instructions:
JMP C 4 Jump to instruction following label C.
JSR C 6 Jump to subroutine following label C.
RET 4 Return from subroutine jumped to by a JSR.  Program

execution continues with the instruction following that JSR.
Conditional Jump Instructions:



CMP A, B 16 Do a comparison of A and B.  Branch statements below
jump based on the last CMP performed:

BEQ C 5 Branch (jump) to instruction following label C if (A=B).
BNE C 5 Branch to label C if (A ≠ B).
BLT C 5 Branch to label C if (A < B).
BLE C 5 Branch to label C if (A ≤ B).
BGT C 5 Branch to label C if (A > B).
BGE C 5 Branch to label C if (A ≥ B).

Miscellaneous & bot Specific Instructions:
NOP 16 Does nothing for that tick.
WAI A 16 Wait until Weapon #A has reloaded.  If A is not equal to

1  or  2,  this  instruction  does  nothing.   This  instruction  is
useful  for  synchronizing  a  firing  routine  with  the  weapon
cycle time.

FIR A 16 Fire  Weapon  #A.   If  A  is  not  equal  to  1  or  2,  this
instruction  does  nothing.   Register  R1  should  contain  the
angle at which to fire.  If the weapon is a Grenade Launcher,
register  R2  should  contain  the  target  distance.   If  the
weapon has not had time to reload, this instruction will do
nothing.

SCN A 8 Scan  at  A°.   Results  are  placed  into  the  S  registers
(detailed above).

SHL A 32 Turn shield off if (A=0) or on if (A≠0).  If the battery has
no charge left or has been destroyed, this instruction does
nothing.  If the bot has no shield installed, this instruction
does nothing.

RPR A, B 16 Repair system A for B cycles.
A: System:
0 CPU
1 Engine
2 Battery
3 Treads

A “cycle” is 10 ticks or 160 Instruction Units.  Valid values for
B are 1-25 (i.e. 10 - 250 ticks).  Any value over 25 is taken as
25.  The bot will lie dormant for the given number of ticks,
and then any damage that the component has taken, up to
(B * RepairRate) points, will have been repaired.  If the bot is
moving,  attempts  to  repair  the  Engine  or  Treads  will  fail
immediately.   If  the  shield  is  on,  attempts  to  repair  the
Battery  will  fail  immediately.   Note  that  you  can,  for
instance, start moving and then repair 



your CPU while your momentum carries your bot across the Arena.



AppendixAppendix B::
Assembly Registers:

The sets of  memory registers are broken into subsections by specific
use.  The user scratch registers, R0–R9, may be read from and written to,
just like DEF variables.  The other register banks, however, are read-only,
and should not  be written to.  If you do change the value of one of these
read-only  registers,  that  register’s  value  is  undefined from that  point  on.
That is, the value could be anything at all.

Scratch Registers:
R0–R9 Anything you want… (R1/R2 used for weapon firing, R0 used

by mathematical functions to return a value; not accessible
in bot Basic)

Scanner Registers:
S0 Scanner result:  0 = No bot scanned.  1 = bot scanned.
S1 Angle to target
S2 Distance to target

Selective Damage Registers:
A0 Damage points left in Armor
A1 Damage points left in CPU
A2 Damage points left in Engine
A3 Damage points left in Battery
A4 Damage points left in Treads

Overall Damage Registers:
D0 Sum of A0, A1, A2, A3, and A4.
D1 Type of damage last taken was from a: (if bot has damage

type recognition)
D1Type
1 Energy Weapon
2 Bullet
3 Grenade
4 Collision.

D2 Direction of damage last taken: (if  have damage direction
recognition)

D2Direction (approximate)
0 0° ± 45°
90 90° ± 45°
180 180° ± 45°
270 270° ± 45°



Weapon & Battery Registers:
B0 Current Battery charge.
B1 Number of shots left for Weapon 1.
B2 Number of shots left for Weapon 2.

bot Position Registers:
X0 Current X position (0 to 255).
Y0 Current Y position (0 to 255).
X1 Current X velocity (-255 to 255).
Y1 Current Y velocity (-255 to 255).



AppendixAppendix C::
Basic Mnemonics for Registers:

Register Mnemonic Description
A0 $ARMOR Armor durability remaining
A1 $CPU CPU durability remaining
A2 $ENGINE Engine durability remaining
A3 $BATTERY Battery durability remaining
A4 $TREADS Tread durability remaining

B2 $CHARGE Current battery charge
B1 $BULLETS1 Bullets left for Weapon 1
B2 $BULLETS2 Bullets left for Weapon 2

D0 $DAMAGE Total durability value
D1 $DAMAGETYPE IDR — type of damage last taken
D2 $DAMAGEDIR IDR — direction of ”   ”   ”

S0 $FOUND Scan result
S1 $ANGLE Angle to scanned bot
S2 $DISTANCE Distance to scanned bot

X0 $XLOC Current X location
X1 $XVEL Current X velocity
Y0 $YLOC Current Y location
Y1 $YVEL Current Y velocity



AppendixAppendix D::
Basic Statements Quick Reference:

Goto <label>
Gosub <label>
Return
If (<term> <cmp> <term>) Then <CODE> { Else <CODE> }
For <var> = <term> To <term> { Step <term> }
Next <var>
While (<term> <cmp> <term>) <CODE>
Begin <CODE> ... <CODE> End

Scan Angle <term>
Repair <system> For <ticks/10>
Fire Weapon <term> {, Angle <term> } {, Distance <term> }
Shield <term>
Velocity <termX>, <termY>
Wait <ticks>
Wait Weapon <term>

Sin(A) (Sine of A) * 256
Cos(A) (Cosine of A) * 256
ArcTan(Y, X) ArcTangent of Y/X.
Abs(A) Absolute value of A
Random(A) Random number between 0 and A-1

Constants:

For Shield: ON OFF
For Repair: C_CPU C_ENGINE C_BATTERY C_TREADS
For Damage: C_COLLIDE C_BULLET C_GRENADE C_ENERGY



AppendixAppendix E::
Helpful Arena Information:

0 degrees points right
90 degrees points down
180 degrees points left
270 degrees points up

The Arena is  physically  272*272 pixels.   To a  bot,  the  Arena is  only
256*256 pixels, as bots are 16 pixels in diameter.

(0, 0) is in the upper left of the Arena.  (256, 256) is in the lower right.

A bot executes 16 “Instruction Units” every tick.  Therefore, a bot could
execute multiple instructions in a given tick, or none at all.

A velocity of 64 corresponds to 1 pixel/tick.  Velocity range is -255 to
255.

The scanner will lock on to a target if any of the center 10 (of the bot’s
16) pixels fall within the scan arc.

A battle is declared a draw if either a total of 25,000 ticks have passed,
or 5,000 ticks have passed with no damage occurring to any bot.

To move the Arena window,  hold  down the  option  key and drag the
window with the pointer.



Coming in future releases:Coming in future releases:
Arena
Color
Resizable Arena
More bots in Arena at one time
GUI Assembly Debugger
Animated SICN Support
Terrain & Obstacles
Developer
Multiple bots open at once
More languages
Bigger & better compiler support of language constructs
Identification of scanned enemies
Arrays
SICN Editor
More complex Architectures & more precise editing
Both:
System 7.0 Studliness


